Question		Answer	Marks	Guidance
1	(i)	Transformation A is a reflection in the y-axis. Transformation B is a rotation through 90° clockwise about the origin.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & {[2]} \end{aligned}$	
1	(ii)	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)$	M1 A1 [2]	Attempt to multiply in correct order cao
1	(iii)	Reflection in the line $y=x$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	
2	(i)	$\begin{aligned} & \left\|z_{1}\right\|=\sqrt{3^{2}+(3 \sqrt{3})^{2}}=6 \\ & \arg \left(z_{1}\right)=\arctan \frac{3 \sqrt{3}}{3}=\frac{\pi}{3} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Use of Pythagoras cao cao
2	(ii)	$z_{2}=\frac{5}{2}+\frac{5 \sqrt{3}}{2} \mathrm{j}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	May be implied cao
2	(iii)	Because z_{1} and z_{2} have the same argument	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	Consistent with (i)
3		$\alpha+\frac{\alpha}{6}+\alpha-7=\frac{-8}{3} \Rightarrow \alpha=2$ Other roots are -5 and $\frac{1}{3}$ Product of roots $=\frac{-q}{3}=\frac{-10}{3} \Rightarrow q=10$ Sum of products in pairs $=\frac{p}{3}=-11 \Rightarrow p=-33$	M1 A1 M1 A1 M1 A1	Attempt to use sum of roots Value of α (cao) Attempt to use product of roots $q=10 \text { c.a.o. }$ Attempt to use sum of products of roots in pairs $p=-33 \text { cao }$

Question		Answer	Marks	Guidance
5	(i)	$\frac{1}{2 r+1}-\frac{1}{2 r+3}=\frac{2 r+3-(2 r+1)}{(2 r+1)(2 r+3)}=\frac{2}{(2 r+1)(2 r+3)}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \hline \end{gathered}$	Attempt at common denominator
5	(ii)	$\begin{aligned} & \sum_{r=1}^{30} \frac{1}{(2 r+1)(2 r+3)}=\frac{1}{2} \sum_{r=1}^{30}\left[\frac{1}{2 r+1}-\frac{1}{2 r+3}\right] \\ & =\frac{1}{2}\left[\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\ldots+\left(\frac{1}{59}-\frac{1}{61}\right)+\left(\frac{1}{61}-\frac{1}{63}\right)\right] \\ & =\frac{1}{2}\left(\frac{1}{3}-\frac{1}{63}\right)=\frac{10}{63} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Use of (i); do not penalise missing factor of $\frac{1}{2}$ Sufficient terms to show pattern Cancelling terms Factor $1 / 2$ used oe cao
6	(i)	$a_{2}=3 \times 2=6, a_{3}=3 \times 7=21$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	cao
6	(ii)	When $n=1, \frac{5 \times 3^{0}-3}{2}=1$, so true for $n=1$ Assume $a_{k}=\frac{5 \times 3^{k-1}-3}{2}$ $\begin{aligned} & \Rightarrow a_{k+1}=3\left(\frac{5 \times 3^{k-1}-3}{2}+1\right) \\ & =\frac{5 \times 3^{k}-9}{2}+3=\frac{5 \times 3^{k}-9+6}{2} \\ & =\frac{5 \times 3^{k}-3}{2}=\frac{5 \times 3^{(k+1)-1}-3}{2} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$ it is also true for $n=k+1$. Since it is true for $n=1$, it is true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Showing use of $a_{n}=\frac{5 \times 3^{n-1}-3}{2}$ Assuming true for $n=k$ a_{k+1}, using a_{k} and attempting to simplify Correct simplification to left hand expression. May be identified with a 'target' expression using $n=k+1$ Dependent on A1 and previous E1 Dependent on B1 and previous E1

Question		Answer	Marks	Guidance
7	(i)	$(-5,0),(5,0),\left(0, \frac{25}{24}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	-1 for each additional point
7	(ii)	$x=3, x=-4, x=-\frac{2}{3} \text { and } y=0$	$\begin{aligned} & \text { B1 } \\ & {[4]} \end{aligned}$	
7	(iii)	Some evidence of method needed e.g. substitute in 'large' values or argument involving signs Large positive $x, y \rightarrow 0^{+}$ Large negative $x, y \rightarrow 0^{-}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	
7	(iv)			4 branches correct Asymptotic approaches clearly shown Vertical asymptotes correct and labelled Intercepts correct and labelled

Question		Answer	Marks	Guidance
8	(i)	$\begin{aligned} & 3(1+3 \mathrm{j})^{3}-2(1+3 \mathrm{j})^{2}+22(1+3 \mathrm{j})+40 \\ & =3(-26-18 \mathrm{j})-2(-8+6 \mathrm{j})+22(1+3 \mathrm{j})+40 \\ & =(-78+16+22+40)+(-54-12+66) \mathrm{j} \\ & =0 \end{aligned}$ So $z=1+3 j$ is a root	M1 A1 A1 A1 [4]	Substitute $z=1+3 \mathrm{j}$ into cubic $(1+3 \mathrm{j})^{2}=-8+6 \mathrm{j},(1+3 \mathrm{j})^{3}=-26-18 \mathrm{j}$ Simplification (correct) to show that this comes to 0 and so $z=1+3 \mathrm{j}$ is a root
8	(ii)	All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real.	E1 [1]	Convincing explanation
8	(iii)	$1-3 \mathrm{j}$ must also be a root Sum of roots $=-\frac{-2}{3}=\frac{2}{3} \quad$ OR product of roots $=-\frac{40}{3}$ OR $\sum \alpha \beta=\frac{22}{3}$ $(1+3 j)+(1-3 j)+\alpha=\frac{2}{3} \quad$ OR $(1+3 j)(1-3 j) \alpha=-\frac{40}{3}$ OR $(1-3 j)(1+3 j)+(1-3 j) \alpha+(1+3 j) \alpha=\frac{22}{3}$ $\Rightarrow \alpha=\frac{-4}{3}$ is the real root	B1 M1 A2,1,0 A1	Attempt to use one of $\sum \alpha, \alpha \beta \gamma, \sum \alpha \beta$ Correct equation Cao
		OR $1-3 \mathrm{j}$ must also be a root $(z-1+3 \mathrm{j})(z-1-3 \mathrm{j})=z^{2}-2 z+10$ $3 z^{3}-2 z^{2}+22 z+40 \equiv\left(z^{2}-2 z+10\right)(3 z+4)=0$ $\Rightarrow z=\frac{-4}{3}$ is the real root	B1 M1 A1 A1 A1 [5]	Use of factors Correct quadratic factor Correct linear factor (by inspection or division) Cao

Question		Answer	Marks	Guidance
9	(i)	$\begin{aligned} & p=7 \times(-4)+(-1) \times(-19)+(-1) \times(-9)=0 \\ & q=2 \times 11+1 \times(-7)+k \times(2-k) \\ & \Rightarrow q=15+2 k-k^{2} \end{aligned}$	$\begin{gathered} \text { E1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	AG must see correct working AG Correct working
9	(ii)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ccc} 79 & 0 & 0 \\ 0 & 79 & 0 \\ 0 & 0 & 79 \end{array}\right) \\ & \mathbf{A}^{-1}=\frac{1}{79}\left(\begin{array}{ccc} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{array}\right) \end{aligned}$	B2 M1 B1 A1 [5]	-1 each error Use of B $\frac{1}{79}$ Correct inverse
9	(iii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{79}\left(\begin{array}{ccc} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{array}\right)\left(\begin{array}{c} 14 \\ -23 \\ 9 \end{array}\right)=\left(\begin{array}{c} 2 \\ -3 \\ 8 \end{array}\right) \\ & \Rightarrow x=2, y=-3, z=8 \end{aligned}$	M1 A1 A1 A1 [4]	Attempt to pre-multiply by their \mathbf{A}^{-1} SC A2 for x, y, z unspecified sSC B1 for A^{-1} not used or incorrectly placed.

